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Motivation Data Methods Results

Motivation: Spatio-temporal prediction of site index

Definition (Site index)

A relative measure of forest site quality based on the height of the
dominant trees at a reference age.

Goals:
Reformulation of the existing site-productivity model of
Schöpfer & Moosmayer (1972).
Application of comprehensive data from regional and national
forest inventories.
To provide site-index predictions based on climate scenario
data.
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Dominant height measurements on forest inventory sample plots

Species Sample plots
Spruce 91,642
Fir 33,987
Douglas-fir 9,356
Pine 31,559
Oak 28,230
Beech 81,241
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Climate data

We use
1 retrospective climate data for regression modeling,
2 climate scenario projections for spatio-temporal predictions.
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Dominant height growth: Sloboda’s (1971) differential equation

h (to|h(t), t) = ψ1

(
h(t)

ψ1

)exp

[
ψ2

(ψ3−1)t
(ψ3−1)
o

− ψ2

(ψ3−1)t(ψ3−1)

]
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Motivation Data Methods Results

The spatial process of site index

The spatial process of site index is defined for any arbitrary location
s as

y(s) = x(s)′β + b(s) + ε(s) ,

and is composed of
(i) a fixed linear trend dependent on site and climate variables in

x(s),
(ii) a spatially correlated error in terms of a Gaussian process b(s),

with 0 mean, variance θ2, and spatial autocovariance function
c(h), h being the distance between two locations si and sj ,

(iii) and an unstructured error ε(s) ∼ N
(
0, σ2

)
.

⇒ universal kriging (UK) model
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Reformulation of the UK model as mixed model

The UK model can be reformulated as mixed model

y = Xβ + Ub+ ε

having covariance matrix

Cov(y) = Σ = θ2URU ′ + σ2In

and correlation function

Corr [b(si), b(sj)] = R = ρ(si − sj) .
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Spatial autocorrelation

The exponential correlation function

ρ (h) = exp (−h/α)

leads to the covariance function

c (h) =

{
θ2 exp

(
− h
α

)
, for h > 0

σ2 + θ2, for h = 0

and to the parametric semi-variogram model

γ (h) =

{
σ2 + θ2

[
1− exp

(
− h
α

)]
, for h > 0

0, for h = 0 .
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Estimation: iteratively re-weighted generalized least squares (IRWGLS)

(I) Perform prior OLS β̂OLS = (X ′X)
−1
X ′y to estimate the mean model

(II) Iterate between (i) and (ii) until convergence is achieved

(i) Fit the parametric semi-variogram model to the empirical counterpart

min arg

K∑
u=1

{
2γ] (h(u))− 2γ (h(u); θ, σ, α)

}2
γ̂] (h) =

1

2|N(h)|
∑
N(h)

[e(si)− e(sj)]2

N(h) ≡ {(si; sj) : si − sj = h; i, j = 1, . . . , n}

with e =

{
y −Xβ̂OLS , in the first iteration
y −Xβ̂GLS , otherwise

(ii) Perform GLS β̂GLS =
(
X ′Σ̂−1X

)−1
X ′Σ̂−1y
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Estimation

Dilemma of large n
Autocovariance matrix is high-dimensional and becomes
intractable.
Iteratively re-weighted generalized least squares (IRWGLS) is
not feasible.

Hypotheses (given large data exists)

Kriging of OLS residuals in moving 100 point neighborhoods
leads to an unbiased spatial predictor.
The error of the mean model can be neglected for
constructions of prediction intervals.
B-spline regression techniques provide robust estimates of
biologically plausible cause-and-effect curves.
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Prediction

Site-index predictions are spatially kriged at any location s0 in moving
100 point neighborhoods by

ŷ0 = x(s0)′β̂OLS + ĉ′−Σ̂−1−

(
y− −X−β̂OLS

)
,

“−” indicates the simplification of the universal kriging predictor in terms
of a local predictor and Σ̂− has dimension 100× 100.
For interval prediction, the universal kriging variance

E (y0 − ŷ0)
2

=σ2 + θ2 − c′Σ−1c

+
[
x(s0)′ − c′Σ−1X

] [
X ′Σ−1X

]−1 [
x(s0)′ − c′Σ−1X

]′
is approximated by

V̂ar (ŷ0) =σ̂2 + θ̂2 − ĉ′−Σ̂−1− ,

in which the error of the estimator of β is neglected.
Constructions of 95%-intervals are obatained by

ŷ0 ± 1.96

√
V̂ar (ŷ0) .
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Mean model based on B-Spline regression techniques

A B-spline function is defined for the range of a vector of knots

κ = (κ1, . . . , κl+1, . . . , . . . , κd−l, . . . , κd)
T ,

and consists of d basis functions
(
Bl1(x), . . . , Bld(x)

)
of degree l.

A single basis functions is defined for the range between l+ 2 consecutive
knots and overlaps the 2l neighboring basis functions.
With given κ a basis function of degree l = 0 is defined by

B0
v = 1[κv,κv+1)(x) =

{
1 for κv ≤ x < κv+1

0 otherwise,
v = 1, . . . , d− 1 ,

and basis functions of higher order are recursively defined by

Blv(x) =
x− κv

κv+l − κv
Bl−1v (x) +

κv+l+1 − x
κv+l+1 − κv+1

Bl−1v+1(x) .

To guarantee that
∑d
v=1B

l
v(x) = 1 holds for every x ∈ [κ1, κd],

boundary knots are replicated l times, so that κ1 = . . . = κl+1 and
κd−l = . . . = κd.
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Mean model based on B-Spline regression techniques

The entire regression matrix

X = (X1, · · · , Xp)

is composed of the p sub-matrices

Xz =

 Bl1(xz1) . . . Bld(xz1)
...

...
Bl1(xzn) . . . Bld(xzn)

 .

Note: B-spline regression technique is nothing else than a multiple linear
regression model!
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Mean model based on B-Spline regression techniques

Mean model based on B-Spline regression techniques and with
natural boundary constraints.
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Motivation Data Methods Results

Mean model based on B-Spline regression techniques
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Mean model based on B-Spline regression techniques
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Motivation Data Methods Results

Predictions of relative changes of site index
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Motivation Data Methods Results

Validation based on 1000 simulations of Gaussian random fields
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Motivation Data Methods Results

Validation based on 1000 simulations of Gaussian random fields
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Motivation Data Methods Results

Résumé

Site index decreases in low elevation areas and increases in
mountainous regions.
Silver fir and oak stands show increased site index also on
lower elevation sites.
Site index of Scots pine is less affected by a changing climate.
Site conditions in the Alpine foothills region remain highly
productive for growth of Norway spruce.



Motivation Data Methods Results

Résumé

If a universal kriging model is applied to a large forest inventory
data set, then

OLS is sufficient for the estimation of the mean and of the
spatial covariance,
spatial mean plus kriged OLS-residuals in moving 100 point
neighborhoods is a practically unbiased predictor, and
approximating the UK variance by neglecting the error of the
mean yields a quasi-exact interval predictor.
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Motivation Data Methods Results

Retrospective climate data

1 Lateral boundary conditions: NCAR/NCEP reanalysis series in
resolution 2.5◦ × 2.5◦ (lat./long.).

2 Dynamical downscaling in two steps: non-hydrostatic regional
climate model (RCM) Weather Research and Forecasting
(WRF) → 5 km × 5 km resolution.

3 Statistical downscaling: observations from the met-station
network of the German National Meteorological Service →
50m × 50m resolution.

4 Bias correction and smoothing.

30-year long-term means (between 1978 and 2007) as regressor
covariates:

total precipitation during the growing season (PGS)
total of average daily temperatures during the growing season
(TGS)
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Climate projection data

1 Existing runs of the hydrostatic RCM REMO on initiative of
the German Federal Environment Agency

Lateral boundary conditions: general circulation model (GCM)
ECHAM5-MPIOM.
10 km × 10 km horizontal grid resolution.
Scenarios A1B, A2 and B1 from Special Report on Emissions
Scenarios (SRES).

2 Statistical downscaling → 1 km × 1 km: see retrospective
climate data.

3 Spatio-temporal bias correction.
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