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Two well established sampling techniques

Angle count sampling (ACS)
[Bitterlich, 1952, 1984]

ACS estimates basal are
density, i.e. the basal area of
trees per area unit of a forest.
ACS assumes total visibility of
objects, overlooking objects
leads to a nondetection bias.
This bias comes occurs
especially when sampling rare
objects (often of high
ecological value, e.g. admixed
tree species or dead wood).

Point Transect Sampling (PTS)
[Buckland et al, 1993]

PTS estimates abundance
(object density) of all kind of
biological populations,
mainly vertebrates.
PTS focuses on the number
of objects but not their size
(e.g. basal area).
The central idea of PTS is to
count objects and to model
the detection probability.
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Combining ACS and PTS

Basic idea
Estimating the basal area density with ACS
Modeling the detection probability of objects with PTS
Correcting the nondetection bias of ACS, using the
detection probability obtained by PTS

Anticipated Result
(Approx.) unbiased estimators of the basal area density
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Angle count sampling (ACS)

Sampling procedure
At each sample plot in an arbitrary forest, each tree is targeted
with the relascope.
A tree is counted if its diameter in 1.3 m height (DBH)
appears to be wider then the marks of the relascope.

Bitterlich Relascope (1955) “Bitterlich” - Android App by Janek Kaas:
https://play.google.com/store/apps/
details?id=ee.deskis.adnroid.relascope



Correcting the
nondetection
bias of ACS

Tim Ritter
tritter@gwdg.de

Introduction
Starting point

New idea

Conventional
sampling techniques

Bias corrected
ACS

Performance
of the
estimators

Conclusions

References

5/26

Angle count sampling (ACS)

Estimator [Bitterlich, 1984]
The relascope has an opening angle α, which determines the
basal area factor k and the radius R of the marginal inclusion
circle for a tree with DBH d .

k = sin2
(
α

2

)
=

d2

4R2 (1)

The basal area density is estimated as:

ˆ̄G= k · z (2)
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Point transect sampling (PTS)

Sampling procedure
At each sample point in an arbitrary forest, the distances rj to
any tree j sighted from that point is measured (e.g. by laser
rangefinder) and recorded.

Laser rangefinder
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Point transect sampling (PTS)

Detection function
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Estimated half-normal detection function ĝ(r) and histogram of
detection distances.
The histogram is normalized by the methods shown in Buckland
et al [2001, pp. 147-150].

P̂a=
2
ω2

∫ ω

0
r ĝ(r)dr

(3)
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Point transect sampling (PTS)

Density estimator
The density estimator according to Buckland et al [2001] is

D̂ =
m

πω2P̂a
= m ·

(
2π ·

∫ ω

0
r ĝ(r) dr

)−1
(4)
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BcACS1

Heuristic
Expand each tree count by the tree’s
individual inverse estimated detection probability to correct for
the negative bias introduced by overlooking trees.

Additional sampling effort
The distance rj from the plot center to each sighted tree,
which is supposed to be counted by ACS, has to be measured.

Estimator

ˆ̄GBcACS1 = k ·
zi∑

j=1

1
ĝ(rj)

(5)
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BcACS2

Heuristic
Expand each tree count by the
inverse estimated mean detection probability
of all trees which have the same DBH dj (and therefore also
the same marginal inclusion circle) and are supposed to be
counted at any sample point.

Additional sampling effort
The diameter of each counted tree has to be measured.
This is e.g. done in the repeated German national forest
inventories to estimate volume increment [Polley, 2005].
Measuring all distances rj is not necessary, as long as enough
measurements are taken to estimate g(r).
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BcACS2

Mean detection probability of trees from within their marginal
inclusion circle
The radius of the marginal inclusion circle is Rj = dj/(2

√
k).

The probability to detect a tree with DBH dj from a random
point within its marginal inclusion circle can be estimated by

P̂aj =
2

R2
j

∫ Rj

0
rg(r)dr (6)

Estimator

ˆ̄GBcACS2 = k ·
z∑

j=1

1
P̂aj

=
z∑

j=1

d2
j

4R2
j P̂aj

(7)
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Inclusion probabilities

Horvitz-Thompson estimator
The Horvitz-Thompson estimator of the total of Y over N
trees, is given by

Ŷ (x) =
z∑

j=1

Yj
πj

with πj =
πR2

j
A∗ (8)

A∗: Area of the forest to be inventoried extended by the
peripheral zone [Mandallaz, 2008, Gregoire and Valentine,
2008]
Rj = dj/(2

√
k)
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Inclusion probabilities

Corrected Horvitz-Thompson estimator
As trees may be overlooked, the inclusion probability πj must
be corrected:

π+
j = P ({x ∈ Kj} ∩ {j is detected})

= P (x ∈ Kj) P (j is detected | x ∈ Kj) = πjPaj (9)

This leads to the unbiased estimator

Ŷ (x) =
1

A∗

z∑
j=1

Yj
π+

j
= k

z∑
j=1

Yj
(π/4)d2

j Paj

(10)

of the Y total per area unit.
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Application to basal area density estimates

BcACS2
If the response variable Y is the basal area density Ḡ , the
corrected Horvitz-Thompson estimator can be simplified to

ˆ̄G(x) = k
z∑

j=1

1
Paj

(11)

Replacing Paj by P̂aj leads to the approx. unbiased estimator
ˆ̄GBcACS2
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Application to the new estimators

BcACS1
Under the assumption of CSR,
and if x ∈ Kj for a tree with DBH dj , it holds

E (g(rj)|dj) =
1
πR2

j

∫ Rj

0
g(r)2πr dr = Paj (12)

Thus, ˆ̄GBcACS1 can also approx. correct for the nondetection
bias in ACS.
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Materials and methods

Dataset
Standing dead wood (SDW) with a DBH ≥ 7 cm
235 plots in the forest district Reinhausen
Sampling techniques:

PTS
ACS
Fixed area sampling (FAS) on circular sample plots with 13
m radius

Additionally, the DBH of every sighted piece of SDW was
obtained by cross calipering.
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Results

Object density
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Estimated half-normal detection function ĝ(r) and histogram of
detection distances. The histogram is normalized by the methods
shown in Buckland et al [2001, pp. 147-150].

D̂ = 18.63 ha−1

ŜE(D̂) = 2.08 ha−1
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Results

Estimation of basal area density

Estimator k ˆ̄G ŜE ( ˆ̄G)

ACS 1 0.421 0.059
BcACS1 1 0.609 0.095
BcACS2 1 0.686 0.107
FAS - 0.654 0.117

Comparison of estimated basal area of standing dead wood per area unit ( ˆ̄G)[m2 ha−1] for the different
sampling methods and corresponding ŜEs [m2 ha−1]
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Discussion

Dataset
Extreme case:

Dense understorey
Stumps (h ≥ 1.3 m) can easily be overlooked

Results
Steep detection function
True value is unknown, therefore we cannot asses bias
Nevertheless, there are strong hints, that ACS is severely
biased in this case study
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Materials and methods

Dataset
Two simulated point patterns

Complete spatial randomness (Poisson process)
Clustered population (log-Gaussian Cox process),
derived from the Hainich dataset

Marks derived from the Hainich dataset
(two parametric Weibull distribution)
Detection function from case study A
999 simulation runs
with 225 sample points on

randomized positions
a systematic sampling grid with random starting point
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Results

Point estimates

Density
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(CSR and simple
random sampling),
k = 1 for all ACS
estimators.
Gaussian kernel
density estimation of
the pdf of ˆ̄G .



Correcting the
nondetection
bias of ACS

Tim Ritter
tritter@gwdg.de

Introduction

Bias corrected
ACS

Performance
of the
estimators
Case study A -
fieldstudy

Case study B -
simulation study

Conclusions

References

22/26

Results

SE estimates
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SE estimates (CSR
and simple random
sampling),
k = 1 for all ACS
estimators.
Gaussian kernel
density estimation of
the pdf of ŜE( ˆ̄G).
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Discussion

Point estimates
BcACS1 depends on the assumption of CSR,
however it turned out to be robust against violations of
this assumption in our case study.
The SE of BcACS2 is smaller than that of BcACS1,
which was expected because g(r) is only an estimate for
the correct bias correction by Paj .

SE estimates
Analytic SE estimation for BcACS1 is biased.
Jackknife or Bootstrap estimators may be an alternative.
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Conclusions

ACS is severely biased
BcACS1 and BcACS2

produced approx. unbiased point estimates.
proved to be practicable during the field work

For a given number of sample plots,
the smallest RMSE can be achieved with BcACS2.
Sampling effort for BcACS2 is higher than for BcACS1,
unless diameters are measured for other reasons anyway.

In this case, BcACS2 should be preferred to BcACS1.
Otherwise, time studies are needed to evaluate if the
smaller RMSE and better SE estimation of BcACS2
compensate for the extra sampling effort.
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