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Hedonic regression data for house prices in Austria

Hedonic regression data for house prices in Austria

Variable of primary interest

house price or log house price

Covariates

• Structural (physical) characteristics, like floor space area, constructional
condition, age etc., and

• neighborhood (locational) characteristics, often on various levels of
aggregation, like the proximity to places of work, the social composition of the
neighborhood etc.
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Hedonic regression data for house prices in Austria

Hedonic regression data for house prices in Austria
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Hedonic regression data for house prices in Austria

Hedonic regression data for house prices in Austria

Four-level hierarchical model

level 1: lnp = f1,1(area) + · · ·+ f1,q(age) +Xβ + fmunicipal(s1) + ε1

level 2: fmunicipal(s1) = f2,1(purchase power) + · · ·+ f2,l(level of education)

+fdistrict(s2) + ε2

level 3: fdistrict(s2) = f3,1(unemployment rate) + fcounty(s3) + ε3

level 4: fcounty(s3) = ε4,

The f ’s are possibly nonlinear functions of the covariates.

This is an example of hierarchical structured additive regression models.
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Structured additive regression models

Structured additive regression models

• Distributional and structural assumptions, given covariates and parameters, are
based on Generalized Linear Models.

• E(yi | zi,xi) = h(η) with structured-additive predictor

ηi = f1(zi1) + . . .+ fq(ziq) + x′

iγ

– x′γ parametric part of the predictor

– zj continuous covariate, time scale, location or unit-or cluster index

– zj may be two (even three) dimensional for modeling interactions

– fj one-/two (even three) dimensional, not necessarily continuous functions
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Structured additive regression models

Overview: modeling the functions fj

• nonlinear functions of continuous covariates
Random Walks, see Fahrmeir, Lang (2001a, JRSS C), Fahrmeir, Lang (2001b,
AISM); P-Splines, see Lang, Brezger (2004, JCGS), Brezger, Steiner
(2008,JBES)

• two dimensional surface
two dimensional P-Splines based on tensor products of one dimensional splines,
see Lang, Brezger (2004, JCGS); Brezger, Lang (2006, CSDA), Belitz, Lang
(2008, CSDA)

• Modelling spatial heterogeneity
Markov-random fields, see Besag, York, Mollie (1991, AISM); two dimensional
P-Splines; Gaussian random fields (Kriging), Lang et al. (2013);

• Modelling unit- or cluster specific heterogeneity
I.i.d Gaussian random effects

• varying coefficients
includes random slopes and geographically weighted regression
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Structured additive regression models

General form

• Vector of function evaluations can be written as:

f = Zβ

Z design matrix; β vector of regression coefficients

• Special case varying coefficients

η = . . .+ z(1)g
(

z(2)
)

+ . . . , i.e. f(z(1), z(2)) = z(1)g
(

z(2)
)

f = Zβ = diag(z
(1)
1 , . . . , z(1)n )Z(2)β Z = diag(z

(1)
1 , . . . , z(1)n )Z(2)

• Penalized least squares:

PLS(β1, . . . ,βq) =

n
∑

i=1

(yi − ηi)
2 + λ1β

′

1K1β1 + . . .+ λqβ
′

qKqβq
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Structured additive regression models

General form

• Prior for β in the corresponding Bayesian approach

p(β|τ2) ∝
1

(τ2)rk(K)/2
exp

(

−
1

2τ2
β′Kβ

)

I(Aβ = 0)

τ2 variance parameter, governs the smoothness of f .

• Aβ = 0 is an identifiability constraint, e.g. A = (1, . . . , 1) corresponding to
β’s sum to zero.

• Structure of Z and K depends on the type of the covariates and on
assumptions about smoothness of fj. Z

′Z and K are most often band or
sparse matrices.
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Structured additive regression models

Bayesian P-splines

• Idea: define a prior for the regression coefficients that acts as a penalty, e.g.

β | τ2 ∼ N(0, τ2I)

• Variance parameter τ2 is the analogue to the smoothing parameter.

• Define a hyperprior for τ2, e.g. τ2 ∼ IG(a, b), to be able to estimate the
regression coefficients and the amount of smoothness simultaneously.
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Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference
For simplicity restrict the presentation to a two level hierarchical Gaussian model
with one level-2 equation for the regression coefficients of the first term Z1β1.

• First stage

y = Z1β1 + . . .+ Zqβq +Xγ + ε, ε ∼ N(0, σ2W−1)

• Second stage

β1 = η1 + ε1 = Z11β11 + . . .+ Z1q1β1q1
+X1γ1 + ε1,

and
βj | τ

2
j ∼ N(0, τ2jK

−) with Ajβj = 0 j = 2, . . . , q

and

β1l | τ
2
1l ∼ N(0, τ21lK

−) with A1lβ1l = 0 l = 1, . . . , q1
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Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference

Full conditionals for the regression coefficients at different levels are multivariate
Gaussian. Posterior precision Σ−1 and mean µ given by

β1 with compound prior

Σ−1 =
1

σ2

(

Z′

1WZ1 +
σ2

τ21
I

)

Σ−1µ =
1

σ2
Z′

1Wr1 +
1

τ21
η1

βj in level-1 equation

Σ−1 =
1

σ2

(

Z′

jWZj +
σ2

τ2j
Kj

)

Σ−1µ =
1

σ2
Z′

jWrj

β1l in level-2 equation

Σ−1 =
1

τ21

(

Z′

1lZ1l +
τ21
τ21l

K1l

)

Σ−1µ =
1

τ21
Z′

1l r1l
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Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference

Properties

• Reduced complexity in the second or third stage of the hierarchy:

– Number of “observations” in the level-2 equation is much less than the
actual number of observations n.

– Full conditionals for regression coefficients are Gaussian regardless of the
response distribution in the first level of the hierarchy.

• Sparsity
Design matrices and posterior precision matrices are typically sparse (after
reordering of parameters).

• Number of different observations smaller than sample size
Typically the number of different observations z(1), . . . , z(m) in Z is much
smaller than the total number n of observations, i.e. m ≪ n.
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Hierarchical formulation and MCMC inference

Some details

Efficient computation of Z′WZ and Z′Wr

• Describe computation for a varying coefficient term

f(z) = f
(

z(1), z(2)
)

= z(1) g(z(2))

with design matrix

Z = diag
(

z
(1)
1 , . . . , z(1)n

)

Z(2) = DZ(2)

where D = diag
(

z
(1)
1 , . . . , z

(1)
n

)

.

• Computation for a pure additive term, i.e. D = I, arises as a special case.
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Hierarchical formulation and MCMC inference

Some details

• Denote by z
(2)
(1) < z

(2)
(2) < · · · < z

(2)
(m) the m ordered different observations of

z(2).

• Compute the index vector ind with elements ind[i] ∈ {1, . . . ,m} denoting

the category of the i-th observation, i.e. if z
(2)
i = z

(2)
(j) then ind[i] = j.

• Decompose the design matrix in Z = DPZ̃ where

– Z̃ is the m×K reduced design matrix for the different and sorted

observations z
(2)
(1), . . . , z

(2)
(m), i.e. Z̃[s, k] = Bk

(

z
(2)
(s)

)

, s = 1, . . . ,m,

k = 1, . . . , K,
– P is a n×m permutation matrix, which reverts the sorting, i.e.

P[i, s] = I(ind(i) = s).

• For the vector of function evaluations we obtain f = Zβ = DPZ̃β.
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Hierarchical formulation and MCMC inference

Some details

We get

Z′WZ = Z̃′P′D′WDPZ̃ = Z̃′W̃Z̃,

where
W̃ = P′D′WDP = diag(w̃1, . . . , w̃m)

and the “reduced” weights w̃s, are given by

w̃s =
∑

i : ind[i]=s

(

(z
(1)
i

)2

wi.

The weights w̃s can be computed by first initializing w̃s = 0 followed by a simple

loop: For i = 1, . . . , n add
(

(z
(1)
i

)2

wi to w̃ind[i].
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Hierarchical formulation and MCMC inference

Some details

For Z′Wr we obtain

Z′Wr = Z̃′P′D′Wr = Z̃′r̃,

where the m× 1 vector r̃ = (r̃1, . . . , r̃m)′ of “reduced” partial residuals is given by

r̃s =
∑

i : ind[i]=s

z
(1)
i wi ri.

The r̃s are computed by first initializing r̃s = 0 followed by the loop: For

i = 1, . . . , n add z
(1)
i wi ri to r̃ind(i).
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Application hedonic regression data for house prices in Austria

Application hedonic regression data for house prices in Austria

Four-level hierarchical model

level 1: lnp = f1,1(area) + · · ·+ f1,q(age) +Xβ + fmunicipal(s1) + ε1

level 2: fmunicipal(s1) = f2,1(purchase power) + · · ·+ f2,l(level of education)

+fdistrict(s2) + ε2

level 3: fdistrict(s2) = f3,1(unemployment rate) + fcounty(s3) + ε3

level 4: fcounty(s3) = ε4,
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria

Model diagnosis

• Systematic differences between the data and the estimated model can be
detected with the aid of posterior predictive checks.

• Compare the empirical distribution of logged house prices per sq. m. with the
simulated posterior distributions of house prices obtained from our base model.
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Application hedonic regression data for house prices in Austria
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Application hedonic regression data for house prices in Austria

Replicated Observed

Min Max

mean 7.10 7.15 7.12
std.dev. 0.40 0.44 0.42

min 5.07 5.94 6.22
1% quantile 6.04 6.23 6.27
5% quantile 6.37 6.48 6.42
25% quantile 6.80 6.87 6.81
50% quantile 7.10 7.16 7.13
75% quantile 7.38 7.45 7.43
95% quantile 7.76 7.87 7.81
99% quantile 8.02 8.20 8.01
max 8.26 9.10 8.28

Mean, standard deviation and quantiles of simulated data from the base model
vs. observed data.
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Application hedonic regression data for house prices in Austria

Model diagnosis

• The predictive checks indicate some misspecification as the simulated responses
are sampled in a wider range and are more concentrated around the mean.

• While the mean, the standard deviation and most quantiles of the observed
logged prices per sq. m. are well within the range of the corresponding sampled
model quantities, the extreme quantiles often fall outside the range.

• The age effect is not in line with our expectations for buildings of an age of
less than three years.

• Inspection of the “problematic observations” shows that the corresponding
houses are mostly in a group with age less than three years.
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Application hedonic regression data for house prices in Austria

Improving models on the basis of model diagnosis

• Remove outliers: The dataset contains a number of “new” houses with
implausibly low observed prices per sq. m. below 650 Euro (in total, 43
observations). The reason for these low prices is that for some of the “new”
houses the price might have been paid for only partly or even undeveloped land.

Removing the outliers results in the expected monotonically decreasing age
effect.

The deviance and with it the DIC decreases dramatically for all model
specifications.

• Include interactions with age
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Application store-level scanner data

Application store-level scanner data

Variable of primary interest

Qst weekly unit sales in store s and week t

Covariates

• own price of brand (price)

• prices of competing brands (price national, price dominicks,
pprice premium)

• Store characteristics (e.g. share of women working full-time, share of retirees,
driving time to the nearest supermarket, etc.)
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Application store-level scanner data

Application: store-level scanner data

Model

lnQst = f0(mt) + (1 + αs1) f1 (pricest) + (1 + αs2) f2 (price premiumst)

+ (1 + αs3) f3 (price nationalst) + (1 + αs4) f4 (price dominicksst)

+ x′

stγs + εst,

αsj = fj1(vs1) + . . .+ fj11(vs11) + usj, s = 1, . . . , 81, j = 1, . . . , 4,
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Application store-level scanner data

Application: store-level scanner data
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Application store-level scanner data

Application: store-level scanner data
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Application store-level scanner data

Application: store-level scanner data
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Application store-level scanner data

Application: store-level scanner data
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